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ABSTRACT 

 
High Performance Single Nanometer Lithography (SNL) is an enabling technology for beyond CMOS and future 
nanoelectronics. To keep on with scaling down nanoelectronic components, novel instrumentation for nanometer precise 
placement, overlay alignment and measurement are an essential pre-requirement to realize Next Generation Lithography 
(NGL) systems. In particular, scanning probe based methods for surface modification and lithography are an emerging 
method for producing sub-10 nm features. In this study, we demonstrate nano-scale lithography using a scanning probe 
based method in combination with a Nanopositioning and Nanomeasuring Machine. The latter one has a measuring 
range of 25 mm x 25 mm x 5 mm, 0.1 nanometer resolution and outstanding nanometer accuracy. The basic concept 
consists of a special arrangement allowing Abbe error free measurements in all axes over the total scan range. 
Furthermore, the Nanopositioning and Nanomeasuring Machine is able to store the exact location that can be found again 
with an accuracy of less than 2.5 nanometers. This system is also predestinated for critical dimension, quality and 
overlay control. The integrated scanning probe lithography is based on electric-field-induced patterning of calixarene. As 
a result, repeated step response tests are presented in this paper.  
 
Keywords: Nanopositioning and Nanomeasuring Machine (NPM), Abbe error free measurement, Nanolithography, 
Scanning Probe Lithography, Maskless Patterning, Closed Loop Lithography 
 

1. INTRODUCTION 
The state-of-the-art optical lithography approach is designated for high-volume production that incorporates highly 

sophisticated and carefully maintained fabrication equipment. Regarding the trends of the International Roadmap of 
Semiconductors (ITRS), fabrication facilities and processes currently become orders of magnitude more complex and 
expensive. This is especially true in the case of nanoscale optical masks, where costs can be as much as a million dollars 
per mask set.  
 

For future nanoelectronics and beyond CMOS applications alternative technologies of nanofabrication are coming 
more and more in focus of attention. Alternative nanofabrication technologies have facilitated the development of many 
new fields, e.g. nanoplasmonics, nanophotonics, and nanomedicine. Novel functionalities and unique characteristics, 
increasing optical resolution, and raised potential for energy harvesting are some important goals. In the field of 
nanomedicine early disease diagnosis and monitoring, personalized medicine, protein and peptide delivery, nanorobots 
and nanoprobes, antibody therapeutics, and even cell repair are important keywords. Additionally, nanofabrication 
includes the ability to integrate such nanoscale components and devices into systems spanning nanoscale to macroscale 
dimensions. 
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These kinds of new applications are still in their infancy state. More development iterations or product revisions are 
necessary in order to decrease nanofabrication costs and enable more flexible and reconfigurable processes. This is 
particularly important for rapid nanoscale prototyping.  
 

Amongst others, high performance Single Nanometer Lithography (SNL) is an enabling technology for 
nanoelectronics. Scanning probe-based methods for surface modification and lithography are an emerging method of 
producing sub 10-nm features for future nanoelectronic and beyond CMOS applications [1].  
 

Today’s Scanning Probe Lithography (SPL) approaches are based on atomic force microscopes, characterized by 
highly restricted positioning ranges in the order of 100 µm x 100 µm [2]. The quality and productivity of the 
nanostructures created by SPL strongly depend on the capacities of equipment and instruments used, and the extent to 
which the tip can be precisely controlled. To keep on with shrinking feature sizes of nanoelectronic components the 
precision of SPL control must be enhanced, allowing sub-nanometer positioning accuracy range for all three axis, 
minimized nonlinearity errors and high tip speeds for precise traveling of up to mm/s. In addition, SPL for beyond 
CMOS applications require positioning and placement systems providing repeatability and uncertainty in the range of 
nanometers in combination with x-, y- travel ranges of millimeters [3]. 
 

To fulfill such requirements it is necessary to apply new positioning and measuring concepts providing minimum 
errors in large geometric areas. The Nanopositioning and Nanomeasuring Machine (NPM) developed at Ilmenau 
University of Technology with a measuring range of 25 mm × 25 mm × 5 mm and sub-nanometer resolution allows the 
application of the most diverse optical, tactile and atomic force probes. Various commercial and home-developed AFM's 
where integrated into the NPM Machine, tested and evaluated. Based on the NPM technology the ability of Scanning 
Probe Lithography (SPL) can be extended far beyond the state-of-the-art. 
 

In this paper we describe the combination of the NPM Machine with SPL, enabling high precision large area pattern 
generation in closed loop lithography fashion [4]. Herein, the area of interest is imaged before and after lithography by 
the same tool enabling precise pattern overlay alignment and in-situ inspection. We address the different aspects related 
to system resolution, system noise, internal number representation and limited output resolution at Digital-to-Analog 
Converters (DAC). As one result, repeated step response tests are presented. In general, SPL resolution can be tuned 
mainly by tip bias and applied electron dose, determined by current set point and scanning speed. [4, 5, 6] Its capabilities 
include high resolution patterning, low energy operation preventing substrate damage and proximity interactions, high 
resolution alignment and direct inspection [4]. Employing parallel, self-actuated cantilever arrays can significantly 
increase the “writing” speed and provides a novel technology capable of high throughput patterning of future 
nanoelectronic devices [7]. 
 

2. NANOPOSITIONING AND NANOMEASURING MACHINE (NPM) 
The Ilmenau University of Technology together with SIOS Meßtechnik GmbH has developed a Nanopositioning and 

Nanomeasuring Machine (NPM Machine) with a measuring volume of 25 × 25 × 5 mm³ and a resolution of 0.1 nm [3]. 
This NPM Machine has been manufactured for several years under the name NMM-1. 
 
To achieve nanometer precision it is necessary to apply a set-up that provides minimum errors. At first, fiber coupled 
laser interferometers with highest precision are used. To avoid geometrical errors, the basic concept of the NPM machine 
is based on a special arrangement allowing Abbe error free measurements in all measurement axes over the total 
measurement range. 
 
           (1) 
 

To realize such a set-up, which is schematically outlined in figure 1, the nanoprobe is defined as a null indicator and 
its scanning point is located in the intersection of the three coordinate measuring axes. Thereby, the co-ordinate 
measuring axes are defined by the laser beams of the three high precision fiber coupled miniature plane mirror 
interferometers. The laser beams are reflected on a so-called “mirror corner”. This system, which carries the 
measurement object, forms the orthogonal coordinate system. 
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comparison to conventional polymeric resist systems. Thus, higher lithographic resolution and lower line edge roughness 
(LER) are expected.  
 

Below the nanoprobe, a direct development-less patterning process in positive tone is triggered within the calixarene 
molecular resist film. This highly spatial confined nano-lithographic reaction is driven by a non-uniform electric field 
and an induced Fowler-Nordheim low-energy electron emission between AFM-tip and sample. Thereby, wide process 
latitude from sub-5 nm up to the µm-size was reliable achieved by variation of the line dose (determined by current set-
point and tip speed) and bias voltage [4-6]. Further on, no development steps are necessary enabling the direct inspection 
after the lithography without any steps in between. Two test lithographic features are shown in figure 9 demonstrating 
the patterning of “L-corners” and short and long lines.  
  

Figure 8. Schematic layout of the Imaging & Lithography system. The same nano-probe is used for both direct writing of nano-
features using spatially confined low-energy electron emission from nano-probe-tip and AFM-imaging for pre- and post-inspection as 
well as for pattern overlay alignment [4]. Therefore, two independent feedback loops are integrated, one for AFM imaging and one 
for current controlled lithography. 

 
The electric field required for Fowler-Nordheim electron emission is in the order of 109 V/m. This field can be easily 

achieved by using very sharp AFM-silicon tips, which significantly enhance the electric field at the tip apex, in close 
proximity to the sample surface. Thereby, silicon is an attractive material for building field electron emitters because its 
conductivity could be improved through doping or applied voltages and it has a well-developed MEMS-technology base. 
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Therefore, we have developed a SPL-cantilever process to obtain sharper silicon tips by employing anisotropic etching 
by SF6 plasma etch and wet oxidation to obtain smaller curvature radii. With these tips FN field emission of low energy 
electrons (< 50 eV) can be obtained for nanolithographic applications.   

 

 
Figure 9. AC-AFM mode images of the SPL - structures generated in calixarene resist. All lithographic steps and AFM-images were 
done step by step with the same cantilever (and without any development steps). The two bottom AFM topography images show line 
pattern written with 45 nm half-pitch into 20 nm thick C-MC4R resist. 

6. CONCLUSION AND OUTLOOK 
The here presented development of fundamentally novel unconventional lithographic methods and their 

instrumentation basis for pattern placement, generation and inspection is a key technology enabler for nano-device 
fabrication in the sub-5nm scale regime. Scanning proximal probe techniques have been used to trigger highly localized 
interaction mechanisms. The integration of Scanning Probe Lithography (SPL) into the Nanopositioning and 
Nanomeasuring Machine (NPM) combines sub-nanometer exact positioning and measurement across an immense 
measurement area of 25 x 25 x 5 mm (XYZ) with nanometer lithographic resolution and sub-nm overly positioning 
accuracy capabilities. Moreover, the NPM is capable for high resolution non-destructive metrological CD measurements. 
In conclusion, the NPM is a robust platform for SPL, quantitative atomic force microscopy and single nanometer 
metrology tasks. For the scanning probe lithography adaption a development-less, positive-tone in-situ pattern generation process on calixarene-based molecular glass resist has been applied. This process is triggered below the scanning probe by the high electric field and induced Fowler-Nordheim field emission current. In addition, self-actuating & piezoresistive scanning probes can be employed, expanding the throughput capabilities by enabling cantilever array technology application for imaging and nanolithographic applications. Faster piezo-scanners [17] and regulation principles can be applied to increase imaging and writing speed.  
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